poseutils.datasets.transformation package
Submodules
poseutils.datasets.transformation.CalculateMetrics module
- class poseutils.datasets.transformation.CalculateMetrics.CalculateMetrics
- Bases: - poseutils.datasets.transformation.Transformation.Transformation- No-op Transformation class to indicate dataset metrics need to be recalculated. 
poseutils.datasets.transformation.CropAndScale module
- class poseutils.datasets.transformation.CropAndScale.CropAndScale(low=0, high=256, *args, **kwds)
- Bases: - poseutils.datasets.transformation.Transformation.Transformation- Class to apply crop and scale transformation. Makes call to poseutils.composite.scale_into_bounding_box_2d. - Parameters
- low (int, optional) – Lowest value of the bounding box range, defaults to 0 
- high (int, optional) – Highest value of the bounding box range, defaults to 256 
 
 - __call__(X, **kwds)
- Applies transformation - Parameters
- X (numpy.ndarray) – Joint positions (NxMx2), M = 14 or 16 
- Returns
- Scaled joint positions (NxMx2), M = 14 or 16 
- Return type
- numpy.ndarray 
 
 
poseutils.datasets.transformation.Normalize module
- class poseutils.datasets.transformation.Normalize.Normalize(skip_root=True)
- Bases: - poseutils.datasets.transformation.Transformation.Transformation- Applies z-score normalize transformation on the data. - Parameters
- skip_root (bool, optional) – Whether to skip root/hip, defaults to True 
 - __call__(X, mean, std, **kwds)
- Applies transformation  - Parameters
- X (numpy.ndarray) – Joint positions (NxMxI), M = 14 or 16, I = 2 or 3 
- mean (numpy.ndarray) – Mean values to use when normalizing (MxI) 
- std (numpy.ndarray) – Standard deviation values to use when normalizing (MxI) 
 
- Returns
- Transformed joint positions (NxMx2), M = 14 or 16 
- Return type
- numpy.ndarray 
 
 
poseutils.datasets.transformation.RootCenter module
- class poseutils.datasets.transformation.RootCenter.RootCenter(root_idx=0)
- Bases: - poseutils.datasets.transformation.Transformation.Transformation- Subtracts the root/hip position from the rest of the joints - Parameters
- root_idx (int, optional) – Root/hip index, defaults to 0 
 - __call__(X, **kwds)
- Applies tranfrormation - Parameters
- X (numpy.ndarray) – Joint positions (NxMxI), M = 14 or 16, I = 2 or 3 
- Returns
- Root/hip centered joint positions (NxMxI) 
- Return type
- numpy.ndarray 
 
 
poseutils.datasets.transformation.Transformation module
- class poseutils.datasets.transformation.Transformation.Transformation
- Bases: - object- Base class for other Transformation classes. 
poseutils.datasets.transformation.Unnormalize module
- class poseutils.datasets.transformation.Unnormalize.Unnormalize(skip_root=True)
- Bases: - poseutils.datasets.transformation.Transformation.Transformation- Undoes z-score normalization transformation on the data. - Parameters
- skip_root (bool, optional) – Whether to skip root/hip, defaults to True 
 - __call__(X, mean, std, **kwds)
- Applies transformation  - Parameters
- X (numpy.ndarray) – Joint positions (NxMxI), M = 14 or 16, I = 2 or 3 
- mean (numpy.ndarray) – Mean values to use when normalizing (MxI) 
- std (numpy.ndarray) – Standard deviation values to use when normalizing (MxI) 
 
- Returns
- Transformed joint positions (NxMx2), M = 14 or 16 
- Return type
- numpy.ndarray